Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of Reelin signaling.

نویسندگان

  • Lakhu Keshvara
  • Susan Magdaleno
  • David Benhayon
  • Tom Curran
چکیده

Two major signaling pathways that control neuronal positioning during brain development have been uncovered as a result of genetic and biochemical studies on neurological mouse mutants. Mice deficient in Reelin, Disabled 1 (Dab1), or both the very low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (ApoER2) exhibit identical neuroanatomic defects in laminar structures throughout the brain. These proteins function as components of the Reelin signaling pathway. Reelin is a secreted glycoprotein that binds to VLDLR and ApoER2, inducing tyrosine phosphorylation of Dab1, an intracellular adapter protein. Neuronal migration is also regulated by cyclin-dependent kinase 5 (Cdk5) and its activating subunits p35 and p39. Mice deficient in Cdk5, p35, or both p35 and p39 exhibit lamination defects that are similar but not identical to those observed in mice with a defect in the Reelin signaling pathway. Cdk5 phosphorylates proteins that maintain cytoskeletal structures and promote cell motility. To explore the possibility that Cdk5 influences the Reelin pathway, we sought to determine whether Dab1 is a substrate for Cdk5. Here we show that Cdk5 phosphorylates Dab1 on serine 491 in vitro and in vivo, independently of Reelin signaling. We also show that ectopic neurons in Cdk5-deficient mice exhibit reduced levels of Reelin signaling during later stages of cortical development, although Cdk5 is not required for Reelin-induced tyrosine phosphorylation of Dab1. Although the functional significance of Dab1 serine phosphorylation is unclear, our results suggest that there is biochemical cross-talk between two signaling pathways that control cell positioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission.

Neuronal migration and positioning in the developing brain require the coordinated interaction of multiple cellular signaling pathways. The extracellular signaling molecule Reelin and the cytoplasmic serine/threonine kinase Cdk5 (cyclin-dependent kinase 5) are both required for normal neuronal positioning, lamination of the neocortex, and foliation of the cerebellum. They also modulate synaptic...

متن کامل

Serine phosphorylation regulates disabled-1 early isoform turnover independently of Reelin.

The Reelin-Disabled 1 (Dab1) signaling pathway plays an important role in neuronal cell migration during brain development. Dab1, an intracellular adapter protein which is tyrosine phosphorylated upon Reelin stimulation, has been directly implicated in the transmission and termination of Reelin-mediated signaling. Two main forms of Dab1 have been identified in the developing chick retina, an ea...

متن کامل

Beta-Amyloid Impairs Reelin Signaling

Reelin is a signaling protein increasingly associated with the pathogenesis of Alzheimer's disease that relevantly modulates tau phosphorylation. We have previously demonstrated that β-amyloid peptide (Aβ) alters reelin expression. We have now attempted to determine whether abnormal reelin triggered by Aβ will result in signaling malfunction, contributing to the pathogenic process. Here, we sho...

متن کامل

Alternative splicing modulates Disabled-1 (Dab1) function in the developing chick retina.

The Reelin-Disabled 1 (Dab1)-signaling pathway plays a critical role in neuronal cell positioning in the brain. We have isolated two alternatively spliced variants of Dab1 from chick retina, an early form (chDab1-E) expressed in undifferentiated cells and a late form (chDab1-L) expressed in amacrine and ganglion cells. A key difference between the two forms is the exclusion in chDab1-E of two S...

متن کامل

Reelin, Disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus.

The extracellular matrix molecule Reelin is required for the correct positioning of neurons during the development of the forebrain. However, the mechanism of Reelin action on neuronal migration is poorly understood. Reelin is assumed to act on neurons directly, but it may also affect the differentiation of glial cells necessary for neuronal migration. Here we show that a regular glial scaffold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2002